When.com Web Search

  1. Ad

    related to: quantum wave function formula chemistry ppt

Search results

  1. Results From The WOW.Com Content Network
  2. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. [ 1 ] : 1–2 Its discovery was a significant landmark in the development of quantum mechanics .

  3. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively). Wave functions are complex ...

  4. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in fluid mechanics; List of equations in gravitation; List of equations in nuclear and particle physics; List of equations in wave theory; List of photonics equations; List of relativistic equations

  5. Variational method (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Variational_method...

    = if and only if is exactly equal to the wave function of the ground state of the studied system. The variational principle formulated above is the basis of the variational method used in quantum mechanics and quantum chemistry to find approximations to the ground state.

  6. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    Then solve the differential equation representing this eigenvalue problem in the coordinate basis, for the wave function | = (), using a spectral method. It turns out that there is a family of solutions. In this basis, they amount to Hermite functions, [6] [7] =!

  7. Lippmann–Schwinger equation - Wikipedia

    en.wikipedia.org/wiki/Lippmann–Schwinger_equation

    It relates the scattered wave function with the interaction that produces the scattering (the scattering potential) and therefore allows calculation of the relevant experimental parameters (scattering amplitude and cross sections). The most fundamental equation to describe any quantum phenomenon, including scattering, is the Schrödinger equation.

  8. Rectangular potential barrier - Wikipedia

    en.wikipedia.org/wiki/Rectangular_potential_barrier

    In classical wave-physics, this effect is known as evanescent wave coupling. The likelihood that the particle will pass through the barrier is given by the transmission coefficient, whereas the likelihood that it is reflected is given by the reflection coefficient. Schrödinger's wave-equation allows these coefficients to be calculated.

  9. Møller–Plesset perturbation theory - Wikipedia

    en.wikipedia.org/wiki/Møller–Plesset...

    Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post-Hartree–Fock ab initio methods in the field of computational chemistry.It improves on the Hartree–Fock method by adding electron correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third (MP3) or fourth (MP4) order.