Search results
Results From The WOW.Com Content Network
Kepler's final step was to recognize that these polyhedra fit the definition of regularity, even though they were not convex, as the traditional Platonic solids were. In 1809, Louis Poinsot rediscovered Kepler's figures, by assembling star pentagons around each vertex. He also assembled convex polygons around star vertices to discover two more ...
The regular star polyhedra are called the Kepler–Poinsot polyhedra and there are four of them, based on the vertex arrangements of the dodecahedron {5,3} and icosahedron {3,5}: As spherical tilings, these star forms overlap the sphere multiple times, called its density, being 3 or 7 for these forms.
In geometry, the small stellated dodecahedron is a Kepler–Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {5 ⁄ 2,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex. It shares the same vertex arrangement as the convex regular icosahedron.
The Kepler–Poinsot polyhedra may be constructed from the Platonic solids by a process called stellation. The reciprocal process to stellation is called facetting (or faceting). Every stellation of one polyhedron is dual, or reciprocal, to some facetting of the dual polyhedron. The regular star polyhedra can also be obtained by facetting the ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
However, Louis Poinsot in 1809 rediscovered two more, the great icosahedron and great dodecahedron. This was proved by Augustin-Louis Cauchy in 1812 that there are only four regular star polyhedrons, known as the Kepler–Poinsot polyhedron. [2] Brückner's model [3]
It was named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids. The grand 600-cell can be seen as the four-dimensional analogue of the great icosahedron (which in turn is analogous to the pentagram ); both of these are the only regular n -dimensional star polytopes which are derived by performing ...
Kepler (1619) discovered two of the regular Kepler–Poinsot polyhedra, the small stellated dodecahedron and great stellated dodecahedron. Louis Poinsot (1809) discovered the other two, the great dodecahedron and great icosahedron. The set of four was proven complete by Augustin-Louis Cauchy in 1813 and named by Arthur Cayley in 1859.