When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and periodic variation, respectively.

  3. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...

  4. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The general ARMA model was described in the 1951 thesis of Peter Whittle, who used mathematical analysis (Laurent series and Fourier analysis) and statistical inference. [ 12 ] [ 13 ] ARMA models were popularized by a 1970 book by George E. P. Box and Jenkins, who expounded an iterative ( Box–Jenkins ) method for choosing and estimating them.

  5. In an ARIMA model, the integrated part of the model includes the differencing operator (1 − B) (where B is the backshift operator) raised to an integer power.For example,

  6. X-13ARIMA-SEATS - Wikipedia

    en.wikipedia.org/wiki/X-13ARIMA-SEATS

    X-13ARIMA-SEATS, successor to X-12-ARIMA and X-11, is a set of statistical methods for seasonal adjustment and other descriptive analysis of time series data that are implemented in the U.S. Census Bureau's software package. [3]

  7. Vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Vector_autoregression

    Vector autoregression (VAR) is a statistical model used to capture the relationship between multiple quantities as they change over time. VAR is a type of stochastic process model. VAR models generalize the single-variable (univariate) autoregressive model by allowing for multivariate time series.

  8. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable. Together with the autoregressive (AR) model, the moving-average model is a special case and key component of the more general ARMA and ARIMA models of time series, [3] which have a more complicated stochastic ...

  9. Dickey–Fuller test - Wikipedia

    en.wikipedia.org/wiki/Dickey–Fuller_test

    In statistics, the Dickey–Fuller test tests the null hypothesis that a unit root is present in an autoregressive (AR) time series model. The alternative hypothesis is different depending on which version of the test is used, but is usually stationarity or trend-stationarity.