Search results
Results From The WOW.Com Content Network
The valence is the combining capacity of an atom of a given element, determined by the number of hydrogen atoms that it combines with. In methane, carbon has a valence of 4; in ammonia, nitrogen has a valence of 3; in water, oxygen has a valence of 2; and in hydrogen chloride, chlorine has a valence of 1.
Valency is related, though not identical, to subcategorization and transitivity, which count only object arguments – valency counts all arguments, including the subject. The linguistic meaning of valency derives from the definition of valency in chemistry. Like valency found in chemistry, there is the binding of specific elements.
Valence, also known as hedonic tone, is a characteristic of emotions that determines their emotional affect (intrinsic appeal or repulsion). Positive valence corresponds to the "goodness" or attractiveness of an object, event, or situation, making it appealing or desirable.
Valence (chemistry), a measure of an element's combining power with other atoms Valence electron, electrons in the outer shell of an atom's energy levels; Valence quarks, those quarks within a hadron that determine the hadron's quantum numbers
The valence shell is the set of orbitals which are energetically accessible for accepting electrons to form chemical bonds. For main-group elements, the valence shell consists of the ns and np orbitals in the outermost electron shell.
The valency of an element is the number of electrons that must be lost or gained by an atom to obtain a stable electron configuration. In simple terms, it is the measure of the combining capacity of an element to form chemical compounds .
A graph with a loop having vertices labeled by degree. In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. [1]
[1] [2] [3] For the number of chemical bonds of atoms, the term "valence" is used (Fig. 1). For both atoms and larger species, the number of bonds may be specified: divalent species can form two bonds; a trivalent species can form three bonds; and so on. [4]