Search results
Results From The WOW.Com Content Network
The straight lines which form right angles are called perpendicular. [8] Euclid uses right angles in definitions 11 and 12 to define acute angles (those smaller than a right angle) and obtuse angles (those greater than a right angle). [9] Two angles are called complementary if their sum is a right angle. [10]
An angle equal to 1 / 4 turn (90° or π / 2 radians) is called a right angle. Two lines that form a right angle are said to be normal, orthogonal, or perpendicular. [12] An angle larger than a right angle and smaller than a straight angle (between 90° and 180°) is called an obtuse angle [11] ("obtuse" meaning "blunt").
Transverse – intersecting at any angle, i.e. not parallel. Orthogonal (or perpendicular) – at a right angle (at the point of intersection). Elevation – along a curve from a point on the horizon to the zenith, directly overhead. Depression – along a curve from a point on the horizon to the nadir, directly below.
The tribar/triangle appears to be a solid object, made of three straight beams of square cross-section which meet pairwise at right angles at the vertices of the triangle they form. The beams may be broken, forming cubes or cuboids. This combination of properties cannot be realized by any three-dimensional object in ordinary Euclidean space.
Every kite is an orthodiagonal quadrilateral, meaning that its two diagonals are at right angles to each other. Moreover, one of the two diagonals (the symmetry axis) is the perpendicular bisector of the other, and is also the angle bisector of the two angles it meets. [1] Because of its symmetry, the other two angles of the kite must be equal.
Angles whose sum is a right angle are called complementary. Complementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the right angle. The number of rays in between the two original rays is infinite. Angles whose sum is a straight angle are supplementary ...
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
A triangle in which one of the angles is a right angle is a right triangle, a triangle in which all of its angles are less than that angle is an acute triangle, and a triangle in which one of it angles is greater than that angle is an obtuse triangle. [8] These definitions date back at least to Euclid. [9]