When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vapour pressure of water - Wikipedia

    en.wikipedia.org/wiki/Vapour_pressure_of_water

    The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.

  3. Vapor pressure - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressure

    According to the American Meteorological Society Glossary of Meteorology, saturation vapor pressure properly refers to the equilibrium vapor pressure of water above a flat surface of liquid water or solid ice, and is a function only of temperature and whether the condensed phase is liquid or solid. [17]

  4. Tetens equation - Wikipedia

    en.wikipedia.org/wiki/Tetens_equation

    where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]

  5. Water vapor - Wikipedia

    en.wikipedia.org/wiki/Water_vapor

    Water vapor, water vapour or aqueous vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Water vapor is transparent, like most constituents of the atmosphere. [1]

  6. Water (data page) - Wikipedia

    en.wikipedia.org/wiki/Water_(data_page)

    In the following table, material data are given with a pressure of 611.7 Pa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point, ice can exist together with both liquid water and vapor.

  7. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/Clausius–Clapeyron_relation

    Therefore, the August–Roche–Magnus equation implies that saturation water vapor pressure changes approximately exponentially with temperature under typical atmospheric conditions, and hence the water-holding capacity of the atmosphere increases by about 7% for every 1 °C rise in temperature.

  8. Antoine equation - Wikipedia

    en.wikipedia.org/wiki/Antoine_equation

    (760 mmHg = 101.325 kPa = 1.000 atm = normal pressure) This example shows a severe problem caused by using two different sets of coefficients. The described vapor pressure is not continuous—at the normal boiling point the two sets give different results. This causes severe problems for computational techniques which rely on a continuous vapor ...

  9. Vapor pressures of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressures_of_the...

    Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).