When.com Web Search

  1. Ad

    related to: conic section all formulas

Search results

  1. Results From The WOW.Com Content Network
  2. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  3. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.

  4. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A non-degenerate conic section given by equation can be identified by evaluating . The conic section is: [ 13 ] an ellipse or a circle, if B 2 − 4 A C < 0 {\displaystyle B^{2}-4AC<0} ;

  5. Conic constant - Wikipedia

    en.wikipedia.org/wiki/Conic_constant

    The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0. This formulation is used in geometric optics to specify oblate elliptical ( K > 0 ), spherical ( K = 0 ), prolate elliptical ( 0 > K > −1 ), parabolic ( K = −1 ), and hyperbolic ( K ...

  6. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    The center of a conic, if it exists, is a point that bisects all the chords of the conic that pass through it. This property can be used to calculate the coordinates of the center, which can be shown to be the point where the gradient of the quadratic function Q vanishes—that is, [8] = [,] = [,].

  7. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    It is an affine image of the right-circular unit cone with equation + = . From the fact, that the affine image of a conic section is a conic section of the same type (ellipse, parabola,...), one gets: Any plane section of an elliptic cone is a conic section. Obviously, any right circular cone contains circles.

  8. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a ...

  9. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The pencil of conic sections with the x axis as axis of symmetry, one vertex at the origin (0, 0) and the same semi-latus rectum can be represented by the equation = + (),, with the eccentricity. For e = 0 {\displaystyle e=0} the conic is a circle (osculating circle of the pencil),