Search results
Results From The WOW.Com Content Network
BUN is an indication of kidney health. The normal range is 2.1–7.1 mmol/L or 6–20 mg/dL. [1]The main causes of an increase in BUN are: high-protein diet, decrease in glomerular filtration rate (GFR) (suggestive of kidney failure), decrease in blood volume (hypovolemia), congestive heart failure, gastrointestinal hemorrhage, [5] fever, rapid cell destruction from infections, athletic ...
The normal serum creatinine (sCr) varies with the subject's body muscle mass and with the technique used to measure it. For the adult male, the normal range is 0.6 to 1.2 mg/dl, or 53 to 106 μmol/L by the kinetic or enzymatic method, and 0.8 to 1.5 mg/dl, or 70 to 133 μmol/L by the older manual Jaffé reaction. For the adult female, with her ...
A reference range is usually defined as the set of values 95 percent of the normal population ... blood urea nitrogen: 7 [14] 18, [14] 21 ... mg/dL BUN/Creatinine ...
The National Institutes of Health provides ranges considered within normal limits, ... BUN (blood urea nitrogen) 7–20 mg/dL Calcium: 8.5–10.9 mg/dL Chloride: 96–106
The BUN:Cr in prerenal azotemia is greater than 20. The reason for this lies in the mechanism of filtration of urea and creatinine. Renal Plasma Flow (RPF) is decreased due to hypoperfusion which results in a proportional decrease in Glomerular Filtration Rate (GFR). In turn, the decreased flow and pressure to the kidney will be sensed by ...
The normal range of GFR, adjusted for body surface area, is 100–130 average 125 (mL/min)/(1.73 m 2) in men and 90–120 (mL/min)/(1.73 m 2) in women younger than the age of 40. In children, GFR measured by inulin clearance is 110 (mL/min)/(1.73 m 2 ) until 2 years of age in both sexes, and then it progressively decreases.
Normal human reference range of osmolality in plasma is about 275-299 milli-osmoles per kilogram. [3] Nonhuman ... [Glucose] and [BUN] are measured in mg/dL.
If one removes 1440 mg in 24 h, this is equivalent to removing 1 mg/min. If the blood concentration is 0.01 mg/mL (1 mg/dL), then one can say that 100 mL/min of blood is being "cleared" of creatinine, since, to get 1 mg of creatinine, 100 mL of blood containing 0.01 mg/mL would need to have been cleared.