When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Furstenberg's proof of the infinitude of primes - Wikipedia

    en.wikipedia.org/wiki/Furstenberg's_proof_of_the...

    In mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences.

  3. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Euclid offered a proof published in his work Elements (Book IX, Proposition 20), [1] which is paraphrased here. [2] Consider any finite list of prime numbers p 1, p 2, ..., p n. It will be shown that there exists at least one additional prime number not included in this list. Let P be the product of all the prime numbers in the list: P = p 1 p ...

  4. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a ...

  5. Arithmetic progression topologies - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression...

    Both the Furstenberg and Golomb topologies furnish a proof that there are infinitely many prime numbers. [1] [2] A sketch of the proof runs as follows: Fix a prime p and note that the (positive, in the Golomb space case) integers are a union of finitely many residue classes modulo p. Each residue class is an arithmetic progression, and thus clopen.

  6. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    The proof of this statement requires some calculus and analytic number theory . The particular case a = 1 (i.e., concerning the primes that are congruent to 1 modulo some n) can be proven by analyzing the splitting behavior of primes in cyclotomic extensions, without making use of calculus (Neukirch 1999, §VII.6).

  7. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    There are known formulae to evaluate the prime-counting function (the number of primes smaller than a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2 × 10 21 ) smaller than 10 23 .

  8. Primorial prime - Wikipedia

    en.wikipedia.org/wiki/Primorial_prime

    As of December 2024, the largest known prime of the form p n # + 1 is 7351117# + 1 (n = 498,865) with 3,191,401 digits, also found by the PrimeGrid project. Euclid's proof of the infinitude of the prime numbers is commonly misinterpreted as defining the primorial primes, in the following manner: [2]

  9. Euclid number - Wikipedia

    en.wikipedia.org/wiki/Euclid_number

    Not all Euclid numbers are prime. E 6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid number. Every Euclid number is congruent to 3 modulo 4 since the primorial of which it is composed is twice the product of only odd primes and thus congruent to 2 modulo 4. This property implies that no Euclid number can be a square.