Search results
Results From The WOW.Com Content Network
Saturation arithmetic is a version of arithmetic in which all operations, such as addition and multiplication, are limited to a fixed range between a minimum and maximum value. If the result of an operation is greater than the maximum, it is set ("clamped") to the maximum; if it is below the minimum, it is clamped to the minimum. The name comes ...
An expression like 1/2x is interpreted as 1/(2x) by TI-82, [3] as well as many modern Casio calculators [36] (configurable on some like the fx-9750GIII), but as (1/2)x by TI-83 and every other TI calculator released since 1996, [37] [3] as well as by all Hewlett-Packard calculators with algebraic notation.
Extended real numbers (top) vs projectively extended real numbers (bottom). In mathematics, the extended real number system [a] is obtained from the real number system by adding two elements denoted + and [b] that are respectively greater and lower than every real number.
The term tetration, introduced by Goodstein in his 1947 paper Transfinite Ordinals in Recursive Number Theory [2] (generalizing the recursive base-representation used in Goodstein's theorem to use higher operations), has gained dominance. It was also popularized in Rudy Rucker's Infinity and the Mind.
The relevant section of Two New Sciences is excerpted below: [2]. Simplicio: Here a difficulty presents itself which appears to me insoluble.Since it is clear that we may have one line greater than another, each containing an infinite number of points, we are forced to admit that, within one and the same class, we may have something greater than infinity, because the infinity of points in the ...
Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set [9] (e.g., "the third man from the left" or "the twenty-seventh day of January").
In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic.More precisely, a cardinal κ is strongly inaccessible if it satisfies the following three conditions: it is uncountable, it is not a sum of fewer than κ cardinals smaller than κ, and < implies <.
An operation of arity zero, called a nullary operation, is simply an element of the codomain Y. An n-ary operation can also be viewed as an (n + 1)-ary relation that is total on its n input domains and unique on its output domain. An n-ary partial operation ω from X n to X is a partial function ω: X n → X.