Ads
related to: altitude definition in math geometry worksheets for 10th gradestudy.com has been visited by 100K+ users in the past month
teacherspayteachers.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In geometry, an altitude of a triangle is a line segment through a given vertex (called apex) and perpendicular to a line containing the side or edge opposite the apex. This (finite) edge and (infinite) line extension are called, respectively, the base and extended base of the altitude.
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
The exact definition and reference datum varies according to the context (e.g., aviation, geometry, geographical survey, sport, or atmospheric pressure). Although the term altitude is commonly used to mean the height above sea level of a location, in geography the term elevation is often preferred for this usage.
The zero-elevation baseline or vertical datum to which a measurement of elevation or altitude is relative, e.g. the mean sea level calculated for a given location over a given period of time. [4] See also geodetic datum. de facto segregation The spatial and social separation of populations that occurs without legal sanction. [2] de jure segregation
An altitude of a triangle is a straight line through a vertex and perpendicular to the opposite side. This opposite side is called the base of the altitude, and the point where the altitude intersects the base (or its extension) is called the foot of the altitude. [23] The length of the altitude is the distance between the base and the vertex.
In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. [1] The line through these points is the Simson line of P, named for Robert Simson. [2] The concept was first published, however, by William Wallace in 1799, [3] and is sometimes called the Wallace line. [4]