When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    For the following definitions, two examples will be used. The first is the problem of character recognition given an array of n {\displaystyle n} bits encoding a binary-valued image. The other example is the problem of finding an interval that will correctly classify points within the interval as positive and the points outside of the range as ...

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms. For example, PAC theory inspired boosting, VC theory led to support vector machines, and Bayesian inference led to belief ...

  5. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  6. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    For example, GPT-3, and its precursor GPT-2, [11] are auto-regressive neural language models that contain billions of parameters, BigGAN [12] and VQ-VAE [13] which are used for image generation that can have hundreds of millions of parameters, and Jukebox is a very large generative model for musical audio that contains billions of parameters.

  7. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  8. Vapnik–Chervonenkis theory - Wikipedia

    en.wikipedia.org/wiki/Vapnik–Chervonenkis_theory

    One of its main applications in statistical learning theory is to provide generalization conditions for learning algorithms. From this point of view, VC theory is related to stability , which is an alternative approach for characterizing generalization.

  9. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    Active learning: Instead of assuming that all of the training examples are given at the start, active learning algorithms interactively collect new examples, typically by making queries to a human user. Often, the queries are based on unlabeled data, which is a scenario that combines semi-supervised learning with active learning.