Search results
Results From The WOW.Com Content Network
In contrast, approximately 25% of all proteins are membrane proteins. [15] Their hydrophobic surfaces make structural and especially functional characterization difficult. [13] [16] Detergents can be used to render membrane proteins water-soluble, but these can also alter protein structure and function. [13]
There are four groups of intramembrane proteases, distinguished by their catalytic mechanism: [5]. Metalloproteases: Site-2 protease (S2P) and S2P-like proteases [9]; Aspartyl proteases: this group includes presenilin, the active subunit of gamma secretase [10] [11] and signal peptide peptidases (SPPs) and SPP-like proteases, which are distantly related to presenilin but have opposite membrane ...
Tetraspanins are a family of membrane proteins found in all multicellular eukaryotes also referred to as the transmembrane 4 superfamily (TM4SF) proteins. These proteins have four transmembrane alpha-helices and two extracellular domains, one short (called the s mall e xtracellular d omain or l oop, SED/SEL or EC1) and one longer, typically 100 ...
Several integral nuclear membrane proteins of different size and structure have been identified. [3] It is proposed that they share some structural features with respect to nucleoplasmic domain(s) and lipid-soluble domain(s). Some INM proteins contain common protein domain structures, and can thus be categorised into known protein domain families.
An integral, or intrinsic, membrane protein (IMP) [1] is a type of membrane protein that is permanently attached to the biological membrane. All transmembrane proteins can be classified as IMPs, but not all IMPs are transmembrane proteins. [2] IMPs comprise a significant fraction of the proteins encoded in an organism's genome. [3]
The Membrane Protein Structural Dynamics Consortium (MPSDC) is a large scale collaborative consortium composed of an interdisciplinary team of scientists who use biophysical and computational methods to understand how the structure and movement of membrane proteins determine their functions. [2]
The molecular architecture of the pore, its degree of selectivity, the extent to which it incorporates lipids from the surrounding membrane, and the presence of portions of the protein that extend beyond the membrane all vary among viroporins and indicate that these proteins have a diverse array of functional roles. [4] [5]
Schematic representation of transmembrane proteins: 1) a single-pass membrane protein 2) a multipass membrane protein (α-helix) 3) a multipass membrane protein β-sheet. The membrane is represented in light yellow. A transmembrane protein is a type of integral membrane protein that spans the entirety of the cell membrane.