When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kepler–Poinsot polyhedron - Wikipedia

    en.wikipedia.org/wiki/KeplerPoinsot_polyhedron

    Kepler's final step was to recognize that these polyhedra fit the definition of regularity, even though they were not convex, as the traditional Platonic solids were. In 1809, Louis Poinsot rediscovered Kepler's figures, by assembling star pentagons around each vertex. He also assembled convex polygons around star vertices to discover two more ...

  3. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    The Kepler–Poinsot polyhedra may be constructed from the Platonic solids by a process called stellation. The reciprocal process to stellation is called facetting (or faceting). Every stellation of one polyhedron is dual, or reciprocal, to some facetting of the dual polyhedron. The regular star polyhedra can also be obtained by facetting the ...

  4. Harmonices Mundi - Wikipedia

    en.wikipedia.org/wiki/Harmonices_Mundi

    In the second chapter is the earliest mathematical understanding of two types of regular star polyhedra, the small and great stellated dodecahedron; they would later be called Kepler's solids or Kepler Polyhedra and, together with two regular polyhedra discovered by Louis Poinsot, as the Kepler–Poinsot polyhedra. [8]

  5. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The regular star polyhedra are called the Kepler–Poinsot polyhedra and there are four of them, based on the vertex arrangements of the dodecahedron {5,3} and icosahedron {3,5}: As spherical tilings, these star forms overlap the sphere multiple times, called its density, being 3 or 7 for these forms.

  6. Uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Uniform_polyhedron

    Kepler (1619) discovered two of the regular Kepler–Poinsot polyhedra, the small stellated dodecahedron and great stellated dodecahedron. Louis Poinsot (1809) discovered the other two, the great dodecahedron and great icosahedron. The set of four was proven complete by Augustin-Louis Cauchy in 1813 and named by Arthur Cayley in 1859.

  7. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    The Kepler–Poinsot polyhedra may be constructed from the Platonic solids by a process called stellation. Most stellations are not regular. The study of stellations of the Platonic solids was given a big push by H.S.M. Coxeter and others in 1938, with the now famous paper The 59 icosahedra. [91]

  8. Great icosahedron - Wikipedia

    en.wikipedia.org/wiki/Great_icosahedron

    In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra (nonconvex regular polyhedra), with Schläfli symbol {3, 5 ⁄ 2} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

  9. Small stellated dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Small_stellated_dodecahedron

    In geometry, the small stellated dodecahedron is a Kepler–Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {5 ⁄ 2,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex. It shares the same vertex arrangement as the convex regular icosahedron.