Ad
related to: interval construction cheat sheet
Search results
Results From The WOW.Com Content Network
The principle is to evaluate f(x) using interval arithmetic (this is the forward step). The resulting interval is intersected with [y]. A backward evaluation of f(x) is then performed in order to contract the intervals for the x i (this is the backward step). We now illustrate the principle on a simple example.
A Neyman construction can be carried out by performing multiple experiments that construct data sets corresponding to a given value of the parameter. The experiments are fitted with conventional methods, and the space of fitted parameter values constitutes the band which the confidence interval can be selected from.
An interval is said to be bounded, if it is both left- and right-bounded; and is said to be unbounded otherwise. Intervals that are bounded at only one end are said to be half-bounded. The empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. Bounded intervals are also commonly known as finite ...
5-limit Tonnetz. Five-limit tuning, 5-limit tuning, or 5-prime-limit tuning (not to be confused with 5-odd-limit tuning), is any system for tuning a musical instrument that obtains the frequency of each note by multiplying the frequency of a given reference note (the base note) by products of integer powers of 2, 3, or 5 (prime numbers limited to 5 or lower), such as 2 −3 ·3 1 ·5 1 = 15/8.
4 members of a sequence of nested intervals. In mathematics, a sequence of nested intervals can be intuitively understood as an ordered collection of intervals on the real number line with natural numbers =,,, … as an index. In order for a sequence of intervals to be considered nested intervals, two conditions have to be met:
Similar to the construction of the Cantor set, the Smith–Volterra–Cantor set is constructed by removing certain intervals from the unit interval [,].. The process begins by removing the middle 1/4 from the interval [,] (the same as removing 1/8 on either side of the middle point at 1/2) so the remaining set is [,] [,].
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
The size of an interval between two notes may be measured by the ratio of their frequencies.When a musical instrument is tuned using a just intonation tuning system, the size of the main intervals can be expressed by small-integer ratios, such as 1:1 (), 2:1 (), 5:3 (major sixth), 3:2 (perfect fifth), 4:3 (perfect fourth), 5:4 (major third), 6:5 (minor third).