When.com Web Search

  1. Ads

    related to: how to solve complex roots of fractions

Search results

  1. Results From The WOW.Com Content Network
  2. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is positive the equation has two real roots, and the continued fraction converges to the larger (in absolute value) of these. The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ...

  3. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Methods for finding all complex roots, such as Aberth method can provide the real roots. However, because of the numerical instability of polynomials (see Wilkinson's polynomial), they may need arbitrary-precision arithmetic for deciding which roots are real. Moreover, they compute all complex roots when only few are real.

  4. Heaviside cover-up method - Wikipedia

    en.wikipedia.org/wiki/Heaviside_cover-up_method

    When a partial fraction term has a single (i.e. unrepeated) binomial in the denominator, the numerator is a residue of the function defined by the input fraction. We calculate each respective numerator by (1) taking the root of the denominator (i.e. the value of x that makes the denominator zero) and (2) then substituting this root into the ...

  5. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    Lagrange's discovery implies that the canonical continued fraction expansion of the square root of every non-square integer is periodic and that, if the period is of length p > 1, it contains a palindromic string of length p − 1. In 1813 Gauss derived from complex-valued hypergeometric functions what is now called Gauss's continued fractions ...

  6. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]

  7. Graeffe's method - Wikipedia

    en.wikipedia.org/wiki/Graeffe's_method

    Before continuing to the roots of (), it might be necessary to numerically improve the accuracy of the root approximations for (), for instance by Newton's method. Graeffe's method works best for polynomials with simple real roots, though it can be adapted for polynomials with complex roots and coefficients, and roots with higher multiplicity.

  8. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial (x – r) can be factored out of the polynomial using polynomial long division, resulting in a polynomial of lower degree whose roots are also roots of the original polynomial.

  9. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.