Search results
Results From The WOW.Com Content Network
Toyesh Prakash Sharma, Etisha Sharma, "Putting Forward Another Generalization Of The Class Of Exponential Integrals And Their Applications.," International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.10, Issue.2, pp.1-8, 2023.
List of integrals of exponential functions; List of integrals of logarithmic functions; List of integrals of Gaussian functions; Gradshteyn, Ryzhik, Geronimus, Tseytlin, Jeffrey, Zwillinger, and Moll's (GR) Table of Integrals, Series, and Products contains a large collection of results. An even larger, multivolume table is the Integrals and ...
List of multivariable calculus topics; List of real analysis topics; List of integrals; List of integrals of exponential functions; List of integrals of hyperbolic functions; List of integrals of irrational functions; List of integrals of logarithmic functions; List of integrals of rational functions; List of integrals of trigonometric functions
Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics, the exponential integral Ei is a special function on the complex plane .
List of integrals of inverse trigonometric functions; D. List of definite integrals; E. List of integrals of exponential functions; G. List of integrals of Gaussian ...
A constant, such pi, that may be defined by the integral of an algebraic function over an algebraic domain is known as a period. The following is a list of some of the most common or interesting definite integrals. For a list of indefinite integrals see List of indefinite integrals.
Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions. Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials.
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2]