When.com Web Search

  1. Ads

    related to: counting divisors of numbers
    • Planners

      Help Plan Your Day with These

      Planners, Calendars & More.

    • Office & School Supplies

      See Featured Categories on Supplies

      Including Crafts, Paper and More.

Search results

  1. Results From The WOW.Com Content Network
  2. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself).

  3. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n, then so is −m. The tables below only ...

  4. Prime omega function - Wikipedia

    en.wikipedia.org/wiki/Prime_omega_function

    In number theory, the prime omega functions and () count the number of prime factors of a natural number . Thereby (little omega) counts each distinct prime factor, whereas the related function () (big omega) counts the total number of prime factors of , honoring their multiplicity (see arithmetic function).

  5. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    Another way to classify composite numbers is by counting the number of divisors. All composite numbers have at least three divisors. In the case of squares of primes, those divisors are {,,}. A number n that has more divisors than any x < n is a highly composite number (though the first two such numbers are 1 and 2).

  6. Multiplicative number theory - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_number_theory

    Multiplicative number theory is a subfield of analytic number theory that deals with prime numbers and with factorization and divisors. The focus is usually on developing approximate formulas for counting these objects in various contexts. The prime number theorem is a key result in this subject.

  7. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included. A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k).

  8. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    Demonstration, with Cuisenaire rods, of the first four highly composite numbers: 1, 2, 4, 6. A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N.

  9. Arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_function

    There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes. An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.