Search results
Results From The WOW.Com Content Network
Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. [1] The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is an extensive property.
The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J⋅K −1 ⋅m −3. The volumetric heat capacity can also be expressed as the specific heat capacity (heat capacity per unit of mass, in J⋅K −1 ⋅kg −1) times the density of the substance (in kg/L, or g/mL). [1] It is defined to serve as an intensive property.
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
For a single component system, the "standard" three parameters are the isothermal compressibility , the specific heat at constant pressure , and the coefficient of thermal expansion . For example, the following equations are true:
The vibrational and electronic degrees of freedom do not contribute significantly to the heat capacity in this case, due to the relatively large energy level gaps for both vibrational and electronic excitation in this molecule. This value for the specific heat capacity of nitrogen is practically constant from below −150 °C to about 300 °C.
Heat capacity is a measurable physical quantity equal to the ratio of the heat added to an object to the resulting temperature change. [76] The molar heat capacity is the heat capacity per unit amount (SI unit: mole) of a pure substance, and the specific heat capacity, often called simply specific heat, is the heat capacity per unit mass of a ...
In addition to other physical phenomena, this equation describes the flow of heat in a homogeneous and isotropic medium, with u(x, y, z, t) being the temperature at the point (x, y, z) and time t. If the medium is not homogeneous and isotropic, then α would not be a fixed coefficient, and would instead depend on ( x , y , z ) ; the equation ...
Molar heat capacity of most elements at 25 °C is in the range between 2.8 R and 3.4 R: Plot as a function of atomic number with a y range from 22.5 to 30 J/mol K.. The Dulong–Petit law, a thermodynamic law proposed by French physicists Pierre Louis Dulong and Alexis Thérèse Petit, states that the classical expression for the molar specific heat capacity of certain chemical elements is ...