When.com Web Search

  1. Ads

    related to: function increase and decrease calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.

  3. Monotonic function - Wikipedia

    en.wikipedia.org/wiki/Monotonic_function

    That is, as per Fig. 1, a function that increases monotonically does not exclusively have to increase, it simply must not decrease. A function is termed monotonically increasing (also increasing or non-decreasing) [3] if for all and such that one has (), so preserves the order (see Figure 1).

  4. Step function - Wikipedia

    en.wikipedia.org/wiki/Step_function

    The Heaviside step function is an often-used step function.. A constant function is a trivial example of a step function. Then there is only one interval, =. The sign function sgn(x), which is −1 for negative numbers and +1 for positive numbers, and is the simplest non-constant step function.

  5. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5.

  6. Reduced cost - Wikipedia

    en.wikipedia.org/wiki/Reduced_cost

    In linear programming, reduced cost, or opportunity cost, is the amount by which an objective function coefficient would have to improve (so increase for maximization problem, decrease for minimization problem) before it would be possible for a corresponding variable to assume a positive value in the optimal solution.

  7. Returns to scale - Wikipedia

    en.wikipedia.org/wiki/Returns_to_scale

    For example, when inputs (labor and capital) increase by 100%, the increase in output is less than 100%. The main reason for the decreasing returns to scale is the increased management difficulties associated with the increased scale of production, the lack of coordination in all stages of production, and the resulting decrease in production ...

  8. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2]

  9. Quadratic growth - Wikipedia

    en.wikipedia.org/wiki/Quadratic_growth

    In mathematics, a function or sequence is said to exhibit quadratic growth when its values are proportional to the square of the function argument or sequence position. . "Quadratic growth" often means more generally "quadratic growth in the limit", as the argument or sequence position goes to infinity – in big Theta notation, () = ()