When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Radiometric dating - Wikipedia

    en.wikipedia.org/wiki/Radiometric_dating

    Accurate radiometric dating generally requires that the parent has a long enough half-life that it will be present in significant amounts at the time of measurement (except as described below under "Dating with short-lived extinct radionuclides"), the half-life of the parent is accurately known, and enough of the daughter product is produced to ...

  3. Chronological dating - Wikipedia

    en.wikipedia.org/wiki/Chronological_dating

    While the results of these techniques are largely accepted within the scientific community, there are several factors which can hinder the discovery of accurate absolute dating, including sampling errors and geological disruptions. [5] This type of chronological dating utilizes absolute referent criteria, mainly the radiometric dating methods. [6]

  4. Rubidium–strontium dating - Wikipedia

    en.wikipedia.org/wiki/Rubidium–strontium_dating

    The rubidium–strontium dating method (Rb–Sr) is a radiometric dating technique, used by scientists to determine the age of rocks and minerals from their content of specific isotopes of rubidium (87 Rb) and strontium (87 Sr, 86 Sr). One of the two naturally occurring isotopes of rubidium, 87 Rb, decays to 87 Sr with a half-life of 49.23 ...

  5. Age of Earth - Wikipedia

    en.wikipedia.org/wiki/Age_of_Earth

    Radiometric dating continues to be the predominant way scientists date geologic time scales. Techniques for radioactive dating have been tested and fine-tuned on an ongoing basis since the 1960s. Forty or so different dating techniques have been utilized to date, working on a wide variety of materials.

  6. Absolute dating - Wikipedia

    en.wikipedia.org/wiki/Absolute_dating

    Other radiometric dating techniques are available for earlier periods. One of the most widely used is potassium–argon dating (K–Ar dating). Potassium-40 is a radioactive isotope of potassium that decays into argon-40. The half-life of potassium-40 is 1.3 billion years, far longer than that of carbon-14, allowing much older samples to be dated.

  7. Argon–argon dating - Wikipedia

    en.wikipedia.org/wiki/Argon–argon_dating

    Argon–argon (or 40 Ar/ 39 Ar) dating is a radiometric dating method invented to supersede potassium–argon (K/Ar) dating in accuracy. The older method required splitting samples into two for separate potassium and argon measurements, while the newer method requires only one rock fragment or mineral grain and uses a single measurement of argon isotopes.

  8. Geochronometry - Wikipedia

    en.wikipedia.org/wiki/Geochronometry

    These alternative radiometric methods are: 14C, or radiocarbon; Fission track dating; Optical luminescence dating and Thermoluminescence dating; Cosmic ray exposure dating; These methods, especially radiocarbon, are particularly reliable for recent samples, but are much less accurate for deep geologic time. [5]

  9. K–Ar dating - Wikipedia

    en.wikipedia.org/wiki/K–Ar_dating

    Potassium–argon dating, abbreviated K–Ar dating, is a radiometric dating method used in geochronology and archaeology. It is based on measurement of the product of the radioactive decay of an isotope of potassium (K) into argon (Ar).