Search results
Results From The WOW.Com Content Network
Collagen is one of the long, fibrous structural proteins whose functions are quite different from those of globular proteins, such as enzymes. Tough bundles of collagen called collagen fibers are a major component of the extracellular matrix that supports most tissues and gives cells structure from the outside, but collagen is also found inside ...
In molecular biology, protein fold classes are broad categories of protein tertiary structure topology. They describe groups of proteins that share similar amino acid and secondary structure proportions. Each class contains multiple, independent protein superfamilies (i.e. are not necessarily evolutionarily related to one another). [1] [2] [3]
The term "tertiary structure" is often used as synonymous with the term fold. The tertiary structure is what controls the basic function of the protein. Quaternary structure: the structure formed by several protein molecules (polypeptide chains), usually called protein subunits in this context, which function as a single protein complex.
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.
In molecular biology, the collagen triple helix or type-2 helix is the main secondary structure of various types of fibrous collagen, including type I collagen. In 1954, Ramachandran & Kartha (13, 14) advanced a structure for the collagen triple helix on the basis of fiber diffraction data.
This (Gly-X-Y)n sequence is repeated 343 times in the type III collagen molecule. Proline or hydroxyproline is often found in the X- and Y-position giving the triple helix stability. In addition to being an integral structural component of many organs, type III collagen is also an important regulator of the diameter of type I and II collagen ...
The quaternary structure of this protein complex would be described as a homo-trimer because it is composed of three identical smaller protein subunits (also designated as monomers or protomers). The number of subunits in an oligomeric complex is described using names that end in -mer (Greek for "part, subunit").
Quaternary structure is the three-dimensional structure consisting of the aggregation of two or more individual polypeptide chains (subunits) that operate as a single functional unit . The resulting multimer is stabilized by the same non-covalent interactions and disulfide bonds as in tertiary structure.