Ad
related to: parabolic equations
Search results
Results From The WOW.Com Content Network
For a parametric equation of a parabola in general position see § As the affine image of the unit parabola. The implicit equation of a parabola is defined by an irreducible polynomial of degree two: + + + + + =, such that =, or, equivalently, such that + + is the square of a linear polynomial.
A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena in, i.a., engineering science, quantum mechanics and financial mathematics. Examples include the heat equation, time-dependent Schrödinger equation and the Black–Scholes ...
B 2 − AC = 0 (parabolic partial differential equation): Equations that are parabolic at every point can be transformed into a form analogous to the heat equation by a change of independent variables. Solutions smooth out as the transformed time variable increases. The Euler–Tricomi equation has parabolic type on the line where x = 0.
The convection–diffusion equation is a parabolic partial differential equation that combines the diffusion and convection equations. It describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection .
The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations and stochastic processes.In 1947, when Kac and Feynman were both faculty members at Cornell University, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. [1]
In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations.They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications.
In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point, ... The simplest equation for a parabola, = ...
The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.