Search results
Results From The WOW.Com Content Network
A 4Pi microscope is a laser scanning fluorescence microscope with an improved axial resolution. With it the typical range of the axial resolution of 500–700 nm can be improved to 100–150 nm, which corresponds to an almost spherical focal spot with 5–7 times less volume than that of standard confocal microscopy .
The number Λ such that (,) = has real zeros if and only if λ ≥ Λ. where Φ ( u ) = ∑ n = 1 ∞ ( 2 π 2 n 4 e 9 u − 3 π n 2 e 5 u ) e − π n 2 e 4 u {\displaystyle \Phi (u)=\sum _{n=1}^{\infty }(2\pi ^{2}n^{4}e^{9u}-3\pi n^{2}e^{5u})e^{-\pi n^{2}e^{4u}}} .
4Pi may refer to: IBM System/4 Pi, a family of avionics computers; 4Pi microscope, a microscope that uses interference and fluorescence computers;
3.14159 26535 89793 23846 26433... Uses; Area of a circle; Circumference; ... Number Theory 1: Fermat's Dream. American Mathematical Society, Providence 1993, ...
The number π (/ p aɪ / ⓘ; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.
By 1978, the first theoretical ideas had been developed to break the Abbe limit, which called for using a 4Pi microscope as a confocal laser-scanning fluorescence microscope where the light is focused from all sides to a common focus that is used to scan the object by 'point-by-point' excitation combined with 'point-by-point' detection. [14]
Computable number: A real number whose digits can be computed by some algorithm. Period: A number which can be computed as the integral of some algebraic function over an algebraic domain. Definable number: A real number that can be defined uniquely using a first-order formula with one free variable in the language of set theory.
An exception are the spin representation of SO(3): strictly speaking these are representations of the double cover SU(2) of SO(3). In turn, SU(2) is identified with the group of unit quaternions, and so coincides with the 3-sphere. The spaces of spherical harmonics on the 3-sphere are certain spin representations of SO(3), with respect to the ...