Ad
related to: topology in mathematics pdf file book
Search results
Results From The WOW.Com Content Network
A Topological Picturebook is a book on mathematical visualization in low-dimensional topology by George K. Francis. It was originally published by Springer in 1987, and reprinted in paperback in 2007. The Basic Library List Committee of the Mathematical Association of America has recommended its inclusion in undergraduate mathematics libraries. [1]
The topic of the book is part of a relatively new field of mathematics crossing between topology and combinatorics, now called topological combinatorics. [2] [3] The starting point of the field, [3] and one of the central inspirations for the book, was a proof that László Lovász published in 1978 of a 1955 conjecture by Martin Kneser, according to which the Kneser graphs +, have no graph ...
Other related books on the mathematics of 3-manifolds include 3-manifolds by John Hempel (1976), Knots, links, braids and 3-manifolds by Victor V. Prasolov and Alexei B. Sosinskiĭ (1997), Algorithmic topology and classification of 3-manifolds by Sergey V. Matveev (2nd ed., 2007), and a collection of unpublished lecture notes on 3-manifolds by Allen Hatcher.
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
In mathematics, Lehrbuch der Topologie (German for "textbook of topology") is a book by Herbert Seifert and William Threlfall, first published in 1934 and published in an English translation in 1980. It was one of the earliest textbooks on algebraic topology, and was the standard reference on this topic for many years. Albert W. Tucker wrote a ...
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology , geometric topology , and algebraic topology .
Counterexamples in Topology (1970, 2nd ed. 1978) is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr.. In the process of working on problems like the metrization problem, topologists (including Steen and Seebach) have defined a wide variety of topological properties.
Kelley's 1955 text, General Topology, which eventually appeared in three editions and several translations, is a classic and widely cited graduate-level introduction to topology. An appendix sets out a new approach to axiomatic set theory, now called Morse–Kelley set theory, that builds on Von Neumann–Bernays–Gödel set theory.