Search results
Results From The WOW.Com Content Network
The special theory of relativity, formulated in 1905 by Albert Einstein, implies that addition of velocities does not behave in accordance with simple vector addition.. In relativistic physics, a velocity-addition formula is an equation that specifies how to combine the velocities of objects in a way that is consistent with the requirement that no object's speed can exceed the speed of light.
Relativistic effects are highly non-linear and for everyday purposes are insignificant because the Newtonian model closely approximates the relativity model. In special relativity the Lorentz factor is a measure of time dilation , length contraction and the relativistic mass increase of a moving object.
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
Relative velocities between two particles in classical mechanics. The figure shows two objects A and B moving at constant velocity. The equations of motion are: = +, = +, where the subscript i refers to the initial displacement (at time t equal to zero).
The relativistic four-velocity, that is the four-vector representing velocity in relativity, is defined as follows: = = (,) In the above, is the proper time of the path through spacetime, called the world-line, followed by the object velocity the above represents, and
In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime [nb 1] that represents the relativistic counterpart of velocity, which is a three-dimensional vector in space.
These include the relativity of simultaneity, length contraction, time dilation, the relativistic velocity addition formula, the relativistic Doppler effect, relativistic mass, a universal speed limit, mass–energy equivalence, the speed of causality and the Thomas precession.
Transformations describing relative motion with constant (uniform) velocity and without rotation of the space coordinate axes are called Lorentz boosts or simply boosts, and the relative velocity between the frames is the parameter of the transformation.