When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    For each pair of lines, there can be only one cell where the two lines meet at the bottom vertex, so the number of downward-bounded cells is at most the number of pairs of lines, () /. Adding the unbounded and bounded cells, the total number of cells in an arrangement can be at most n ( n + 1 ) / 2 + 1 {\displaystyle n(n+1)/2+1} . [ 5 ]

  3. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    The convex hull of a simple polygon is divided by the polygon into pieces, one of which is the polygon itself and the rest are pockets bounded by a piece of the polygon boundary and a single hull edge. Although many algorithms have been published for the problem of constructing the convex hull of a simple polygon, nearly half of them are ...

  4. Meniscus (liquid) - Wikipedia

    en.wikipedia.org/wiki/Meniscus_(liquid)

    A: The bottom of a concave meniscus. B: The top of a convex meniscus. In physics (particularly fluid statics), the meniscus (pl.: menisci, from Greek 'crescent') is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.

  5. This Is Why Your IKEA Mug Has a Little Chip at the Bottom - AOL

    www.aol.com/news/why-ikea-mug-little-chip...

    For premium support please call: 800-290-4726 more ways to reach us

  6. Convex hull - Wikipedia

    en.wikipedia.org/wiki/Convex_hull

    In geometry, the convex hull, convex envelope or convex closure [1] of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset.

  7. Convex set - Wikipedia

    en.wikipedia.org/wiki/Convex_set

    The convex-hull operation is needed for the set of convex sets to form a lattice, in which the "join" operation is the convex hull of the union of two convex sets ⁡ ⁡ = ⁡ = ⁡ (⁡ ⁡ ()). The intersection of any collection of convex sets is itself convex, so the convex subsets of a (real or complex) vector space form a complete lattice .

  8. Convex combination - Wikipedia

    en.wikipedia.org/wiki/Convex_combination

    A conical combination is a linear combination with nonnegative coefficients. When a point is to be used as the reference origin for defining displacement vectors, then is a convex combination of points ,, …, if and only if the zero displacement is a non-trivial conical combination of their respective displacement vectors relative to .

  9. Convex polytope - Wikipedia

    en.wikipedia.org/wiki/Convex_polytope

    A convex polytope, like any compact convex subset of R n, is homeomorphic to a closed ball. [11] Let m denote the dimension of the polytope. If the polytope is full-dimensional, then m = n. The convex polytope therefore is an m-dimensional manifold with boundary, its Euler characteristic is 1, and its fundamental group is trivial.