Search results
Results From The WOW.Com Content Network
A separation process is a method that converts a mixture or a solution of chemical substances into two or more distinct product mixtures, [1] a scientific process of separating two or more substances in order to obtain purity. At least one product mixture from the separation is enriched in one or more of the source mixture's constituents.
A heterogeneous mixture (e. g. liquid and solid) can be separated by mechanical separation processes like filtration or centrifugation. Homogeneous mixtures can be separated by molecular separation processes; these are either equilibrium-based or rate-controlled.
Centrifugal filtration is carried out by rapidly rotating the substance to be filtered. The more dense material is separated from the less dense matter by the horizontal rotation. [4] Gravity filtration is the process of pouring the mixture from a higher location to a lower one. It is frequently accomplished via simple filtration, which ...
The sample mixture to be separated and analyzed is introduced, in a discrete small volume (typically microliters), into the stream of mobile phase percolating through the column. The components of the sample move through the column, each at a different velocity, which are a function of specific physical interactions with the adsorbent, the ...
The mobile phase consists of the sample being separated/analyzed and the solvent that moves the sample through the column. In the case of HPLC the mobile phase consists of a non-polar solvent(s) such as hexane in normal phase or a polar solvent such as methanol in reverse phase chromatography and the sample being separated. The mobile phase ...
[8] [9] Mixtures differ from chemical compounds in the following ways: The substances in a mixture can be separated using physical methods such as filtration, freezing, and distillation. There is little or no energy change when a mixture forms (see Enthalpy of mixing). The substances in a mixture keep their separate properties.
The chemical and physical properties of synthetic membranes and separated particles as well as separation driving force define a particular membrane separation process. The most commonly used driving forces of a membrane process in industry are pressure and concentration gradient. The respective membrane process is therefore known as filtration ...
Reverse osmosis (RO) is the finest separation membrane process available, pore sizes range from 0.0001 μm to 0.001 μm. Reverse osmosis is able to retain almost all molecules except for water, and due to the size of the pores, the required osmotic pressure is significantly greater than that for microfiltration.