When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable. The objective is to find a non-linear relation between a pair of random variables X and Y .

  3. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    The general task of pattern analysis is to find and ... This approach is called the "kernel trick". [2] ... (PCA), canonical correlation analysis, ridge regression, ...

  4. Kernel (statistics) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(statistics)

    In nonparametric statistics, a kernel is a weighting function used in non-parametric estimation techniques. Kernels are used in kernel density estimation to estimate random variables' density functions, or in kernel regression to estimate the conditional expectation of a random variable.

  5. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    Matrix regularization has applications in matrix completion, multivariate regression, and multi-task learning. Ideas of feature and group selection can also be extended to matrices, and these can be generalized to the nonparametric case of multiple kernel learning.

  6. Multi-task learning - Wikipedia

    en.wikipedia.org/wiki/Multi-task_learning

    This factorization property, separability, implies the input feature space representation does not vary by task. That is, there is no interaction between the input kernel and the task kernel. The structure on tasks is represented solely by A. Methods for non-separable kernels Γ is a current field of research.

  7. Neural tangent kernel - Wikipedia

    en.wikipedia.org/wiki/Neural_tangent_kernel

    Equivalently, kernel regression is simply linear regression in the feature space (i.e. the range of the feature map defined by the chosen kernel). Note that kernel regression is typically a nonlinear regression in the input space, which is a major strength of the algorithm. Just as it’s possible to perform linear regression using iterative ...

  8. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    This demonstrates that any kernel can be associated with a feature map, and that RLS generally consists of linear RLS performed in some possibly higher-dimensional feature space. While Mercer's theorem shows how one feature map that can be associated with a kernel, in fact multiple feature maps can be associated with a given reproducing kernel.

  9. Kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).