Search results
Results From The WOW.Com Content Network
The two additional assumptions that [1] this X-ray line came from a transition between energy levels with quantum numbers 1 and 2, and [2], that the atomic number Z when used in the formula for atoms heavier than hydrogen, should be diminished by 1, to (Z − 1) 2. Moseley wrote to Bohr, puzzled about his results, but Bohr was not able to help.
The theory would have correctly explained the Zeeman effect, except for the issue of electron spin. Sommerfeld's model was much closer to the modern quantum mechanical picture than Bohr's. In the 1950s Joseph Keller updated Bohr–Sommerfeld quantization using Einstein's interpretation of 1917, [6] now known as Einstein–Brillouin–Keller method.
According to Bohr's complementarity principle, light is neither a wave nor a stream of particles. A particular experiment can demonstrate particle behavior (passing through a definite slit) or wave behavior (interference), but not both at the same time. [72] The same experiment has been performed for light, electrons, atoms, and molecules.
The Bohr model of the chemical bond could not explain the properties of the molecules. Attempts to improve it have been undertaken many times, but have not led to success. [3] A working theory of chemical bonding was formulated only by quantum mechanics on the basis of the principle of uncertainty and the Pauli exclusion principle. In contrast ...
Niels Bohr never mentions wave function collapse in his published work, but he repeatedly cautioned that we must give up a "pictorial representation". Despite the differences between Bohr and Heisenberg, their views are often grouped together as the "Copenhagen interpretation", of which wave function collapse is regarded as a key feature.
The Bohr radius ( ) is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an atom. Its value is 5.291 772 105 44 (82) × 10 −11 m. [1] [2]
Bohr had been working on his atom during this period, but Bohr's model had only a single ground state and no spectra until he incorporated the Nicholson model and referenced the Nicholson papers in his model of the atom. [56] [57] [58] In 1913, Bohr [59] formulated his quantum mechanical model of atom. This stimulated empirical term analysis.
Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the ...