When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    Diagram of the relationship between the different types of frequency and other wave properties. In this diagram, x is the input to the function represented by the arrow. Rotational frequency , usually denoted by the Greek letter ν (nu), is defined as the instantaneous rate of change of the number of rotations , N , with respect to time: ν = d ...

  3. Time–frequency analysis - Wikipedia

    en.wikipedia.org/wiki/Timefrequency_analysis

    In signal processing, timefrequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various timefrequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function ...

  4. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    In the frequency domain (for example, looking at the Fourier transform of the step response, or using an input that is a simple sinusoidal function of time) the time constant also determines the bandwidth of a first-order time-invariant system, that is, the frequency at which the output signal power drops to half the value it has at low ...

  5. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The time constant is related to the RC circuit's cutoff frequency f c, by = = or, equivalently, = = where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz).

  6. Instantaneous phase and frequency - Wikipedia

    en.wikipedia.org/wiki/Instantaneous_phase_and...

    Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. [1] The instantaneous phase (also known as local phase or simply phase ) of a complex-valued function s ( t ), is the real-valued function:

  7. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The simplest set of solutions to the wave equation result from assuming sinusoidal waveforms of a single frequency in separable form: (,) = {()} where i is the imaginary unit, ω = 2π f is the angular frequency in radians per second,

  8. Phase (waves) - Wikipedia

    en.wikipedia.org/wiki/Phase_(waves)

    Phase comparison is a comparison of the phase of two waveforms, usually of the same nominal frequency. In time and frequency, the purpose of a phase comparison is generally to determine the frequency offset (difference between signal cycles) with respect to a reference. [3]

  9. Gabor transform - Wikipedia

    en.wikipedia.org/wiki/Gabor_transform

    As was our expectation, the frequency distribution can be separated into two parts. One is t ≤ 0 and the other is t > 0. The white part is the frequency band occupied by x(t) and the black part is not used. Note that for each point in time there is both a negative (upper white part) and a positive (lower white part) frequency component.