When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Frequency - Wikipedia

    en.wikipedia.org/wiki/Frequency

    The period T is the time taken to complete one cycle of an oscillation or rotation. The frequency and the period are related by the equation [4] =. The term temporal frequency is used to emphasise that the frequency is characterised by the number of occurrences of a repeating event per unit time.

  3. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).

  4. Unit of time - Wikipedia

    en.wikipedia.org/wiki/Unit_of_time

    The TU (for time unit) is a unit of time defined as 1024 μs for use in engineering. The svedberg is a time unit used for sedimentation rates (usually of proteins). It is defined as 10 −13 seconds (100 fs). The galactic year, based on the rotation of the galaxy and usually measured in million years. [2]

  5. Hertz - Wikipedia

    en.wikipedia.org/wiki/Hertz

    The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event (or cycle) per second. [1] [a] The hertz is an SI derived unit whose formal expression in terms of SI base units is s −1, meaning that one hertz is one per second or the reciprocal of one second. [2]

  6. Rotational frequency - Wikipedia

    en.wikipedia.org/wiki/Rotational_frequency

    Angular frequency gives the change in angle per time unit, which is given with the unit radian per second in the SI system. Since 2π radians or 360 degrees correspond to a cycle, we can convert angular frequency to rotational frequency by ν = ω / 2 π , {\displaystyle \nu =\omega /2\pi ,} where

  7. Fundamental frequency - Wikipedia

    en.wikipedia.org/wiki/Fundamental_frequency

    The fundamental frequency, often referred to simply as the fundamental (abbreviated as f 0 or f 1), is defined as the lowest frequency of a periodic waveform. [1] In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial present.

  8. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Frequency: f: Number of (periodic) occurrences per unit time hertz (Hz = s −1) T −1: scalar Half-life: t 1/2: Time for a quantity to decay to half its initial value s T: Heat: Q: Thermal energy: joule (J) L 2 M T −2: Heat capacity: C p: Energy per unit temperature change J/K L 2 M T −2 Θ −1: extensive Heat flux density: ϕ Q: Heat ...

  9. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being applied on the mass, i.e. the additional constant force cannot change the period of oscillation.