When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  3. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    The entropy () thus sets a minimum value for the cross-entropy (,), the expected number of bits required when using a code based on Q rather than P; and the Kullback–Leibler divergence therefore represents the expected number of extra bits that must be transmitted to identify a value x drawn from X, if a code is used corresponding to the ...

  4. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the ...

  5. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    Many properties of divergences can be derived if we restrict S to be a statistical manifold, meaning that it can be parametrized with a finite-dimensional coordinate system θ, so that for a distribution p ∈ S we can write p = p(θ). For a pair of points p, q ∈ S with coordinates θ p and θ q, denote the partial derivatives of D(p, q) as

  6. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    if it is zero, then x could be a local minimum, a local maximum, or neither. (For example, f(x) = x 3 has a critical point at x = 0, but it has neither a maximum nor a minimum there, whereas f(x) = ± x 4 has a critical point at x = 0 and a minimum and a maximum, respectively, there.) This is called the second derivative test.

  8. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.

  9. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    In particular, if the derivative exists, it must be zero at c. By assumption, f is continuous on [a, b], and by the extreme value theorem attains both its maximum and its minimum in [a, b]. If these are both attained at the endpoints of [a, b], then f is constant on [a, b] and so the derivative of f is zero at every point in (a, b).