When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  4. Director circle - Wikipedia

    en.wikipedia.org/wiki/Director_circle

    More generally, for any collection of points P i, weights w i, and constant C, one can define a circle as the locus of points X such that (,) =.. The director circle of an ellipse is a special case of this more general construction with two points P 1 and P 2 at the foci of the ellipse, weights w 1 = w 2 = 1, and C equal to the square of the major axis of the ellipse.

  5. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    In an ellipse, the semi-major axis is the geometric mean of the distance from the center to either focus and the distance from the center to either directrix. The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is ...

  6. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b. For the parabola, the standard form has the focus on the x-axis at the point (a, 0) and the directrix the line with equation x = −a. In standard form the parabola will always pass through the ...

  7. File:Ellipse Properties of Directrix and String Construction ...

    en.wikipedia.org/wiki/File:Ellipse_Properties_of...

    *The distance from a point, P, on the ellipse to a focus is always proportional to the distance to a vertical line, D, called the directrix. The constant of proportionality is the eccentricity, e. *The eccentricity is always between 0 and 1. At zero, the ellispe becomes a circle, at 1 the ellipse becomes a parabola. Greater than one, it is a ...

  8. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    A consequence is that the equation (in ,) of the parabola determined by 3 points = (,), =,,, with different x coordinates is (if two x coordinates are equal, there is no parabola with directrix parallel to the x axis, which passes through the points) =.

  9. Orthoptic (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orthoptic_(geometry)

    In the case of an ellipse ⁠ x 2 / a 2 ⁠ + ⁠ y 2 / b 2 ⁠ = 1 one can adopt the idea for the orthoptic for the quadratic equation + = Now, as in the case of a parabola, the quadratic equation has to be solved and the two solutions m 1 , m 2 must be inserted into the equation tan 2 ⁡ α = ( m 1 − m 2 1 + m 1 m 2 ) 2 . {\displaystyle ...