Search results
Results From The WOW.Com Content Network
The gravitational constant is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's theory of general relativity. It is also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish ...
The equation for universal gravitation thus takes the form: F = G m 1 m 2 r 2 , {\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}},} where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses , and G is the gravitational constant .
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that cannot be explained by a theory and therefore must be measured experimentally. It is distinct from a mathematical constant , which has a fixed numerical value, but does not directly involve any physical measurement.
In abstract index notation, the EFE reads as follows: + = where is the Einstein tensor, is the cosmological constant, is the metric tensor, is the speed of light in vacuum and is the gravitational constant, which comes from Newton's law of universal gravitation.
The value of this constant became important with the beginning of spaceflight in the 1950s, and great effort was expended to determine it as accurately as possible during the 1960s. Sagitov (1969) cites a range of values reported from 1960s high-precision measurements, with a relative uncertainty of the order of 10 −6 .
Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitation in classical physics.
a is the scale factor, G, Λ, and c are universal constants (G is the Newtonian constant of gravitation, Λ is the cosmological constant with dimension length −2, and c is the speed of light in vacuum). ρ and p are the volumetric mass density (and not the volumetric energy density) and the pressure, respectively.