Search results
Results From The WOW.Com Content Network
The triangle medians and the centroid.. In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. . Every triangle has exactly three medians, one from each vertex, and they all intersect at the triangle's cent
For 3 (non-collinear) points, if any angle of the triangle formed by those points is 120° or more, then the geometric median is the point at the vertex of that angle. If all the angles are less than 120°, the geometric median is the point inside the triangle which subtends an angle of 120° to each three pairs of triangle vertices. [ 10 ]
In geometry, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side.
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
The median triangle of a given (reference) triangle is a triangle, the sides of which are equal and parallel to the medians of its reference triangle. The area of the median triangle is of the area of its reference triangle, and the median triangle of the median triangle is similar to the reference triangle of the first median triangle with a ...
The median is also very robust in the presence of outliers, while the mean is rather sensitive. In continuous unimodal distributions the median often lies between the mean and the mode, about one third of the way going from mean to mode. In a formula, median ≈ (2 × mean + mode)/3.
The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle. The triangle formed by the three parallel lines through the three midpoints of sides of a triangle is called its medial triangle.
The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length , which has area 1. There are several ways to calculate the area of an arbitrary triangle.