When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Material derivative - Wikipedia

    en.wikipedia.org/wiki/Material_derivative

    The material derivative is defined for any tensor field y that is macroscopic, with the sense that it depends only on position and time coordinates, y = y(x, t): +, where ∇y is the covariant derivative of the tensor, and u(x, t) is the flow velocity.

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The derivative of a field with respect to a fixed position in space is called the Eulerian derivative, while the derivative following a moving parcel is called the advective or material (or Lagrangian [2]) derivative. The material derivative is defined as the linear operator:

  4. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    The Lagrangian and Eulerian specifications of the kinematics and dynamics of the flow field are related by the material derivative (also called the Lagrangian derivative, convective derivative, substantial derivative, or particle derivative). [1] Suppose we have a flow field u, and we are also given a generic field with Eulerian specification F ...

  5. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    where ⁠ D / Dt ⁠ is the material derivative operator, u is the flow velocity, ρ is the local fluid density, p is the local pressure, τ is the viscous stress tensor and B represents the sum of the external body forces. The first source term on the right hand side represents vortex stretching.

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    On the other hand, the two second-order partial derivatives of the specific internal energy in the momentum equation require the specification of the fundamental equation of state of the material considered, i.e. of the specific internal energy as function of the two variables specific volume and specific entropy: = (,).

  7. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    In axisymmetric flow another stream function formulation, called the Stokes stream function, can be used to describe the velocity components of an incompressible flow with one scalar function. The incompressible Navier–Stokes equation is a differential algebraic equation , having the inconvenient feature that there is no explicit mechanism ...

  8. Coinbase Global (COIN) Q4 2024 Earnings Call Transcript - AOL

    www.aol.com/coinbase-global-coin-q4-2024...

    Image source: The Motley Fool. Coinbase Global (NASDAQ: COIN) Q4 2024 Earnings Call Feb 13, 2025, 5:30 p.m. ET. Contents: Prepared Remarks. Questions and Answers. Call Participants

  9. Kelvin's circulation theorem - Wikipedia

    en.wikipedia.org/wiki/Kelvin's_circulation_theorem

    The differential operator is a substantial (material) derivative moving with the fluid particles. [3] Stated more simply, this theorem says that if one observes a closed contour at one instant, and follows the contour over time (by following the motion of all of its fluid elements), the circulation over the two locations of this contour remains ...