When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Like all forms of regression analysis, linear regression focuses on the conditional probability distribution of the response given the values of the predictors, rather than on the joint probability distribution of all of these variables, which is the domain of multivariate analysis. Linear regression is also a type of machine learning algorithm ...

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    For example, a researcher is building a linear regression model using a dataset that contains 1000 patients (). If the researcher decides that five observations are needed to precisely define a straight line ( m {\displaystyle m} ), then the maximum number of independent variables ( n {\displaystyle n} ) the model can support is 4, because

  4. Demand forecasting - Wikipedia

    en.wikipedia.org/wiki/Demand_forecasting

    There are many different types of regression analysis, but fundamentally they provide an analysis of how one or multiple variables affect the dependent variable being measured. An example of a model for forecasting demand is M. Roodman's (1986) demand forecasting regression model for measuring the seasonality affects on a data point being ...

  5. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  6. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    In linear regression, the use of the least-squares estimator is justified by the Gauss–Markov theorem, which does not assume that the distribution is normal. From the perspective of generalized linear models, however, it is useful to suppose that the distribution function is the normal distribution with constant variance and the link function ...

  7. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model.It is used when there is a non-zero amount of correlation between the residuals in the regression model.

  8. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    In statistics, linear least squares problems correspond to a particularly important type of statistical model called linear regression which arises as a particular form of regression analysis. One basic form of such a model is an ordinary least squares model.

  9. Outline of regression analysis - Wikipedia

    en.wikipedia.org/wiki/Outline_of_regression_analysis

    The following outline is provided as an overview of and topical guide to regression analysis: Regression analysisuse of statistical techniques for learning about the relationship between one or more dependent variables ( Y ) and one or more independent variables ( X ).