Ad
related to: voronoi diagram example ib math 3 answer
Search results
Results From The WOW.Com Content Network
Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .
For a given set of points in space, a Voronoi diagram is a decomposition of space into cells, one for each given point, so that anywhere in space, the closest given point is inside the cell. This is equivalent to nearest neighbor interpolation, by assigning the function value at the given point to all the points inside the cell. [3]
Animation of Fortune's algorithm, a sweep line technique for constructing Voronoi diagrams. In computational geometry, a sweep line algorithm or plane sweep algorithm is an algorithmic paradigm that uses a conceptual sweep line or sweep surface to solve various problems in Euclidean space. It is one of the critical techniques in computational ...
As Fortune describes in ref., [1] a modified version of the sweep line algorithm can be used to construct an additively weighted Voronoi diagram, in which the distance to each site is offset by the weight of the site; this may equivalently be viewed as a Voronoi diagram of a set of disks, centered at the sites with radius equal to the weight of the site. the algorithm is found to have ...
A Voronoi diagram is a special kind of decomposition of a metric space determined by distances to a specified discrete set of objects in the space, e.g., by a discrete set of points. This diagram is named after Georgy Voronoi, also called a Voronoi tessellation, a Voronoi decomposition, or a Dirichlet tessellation after Peter Gustav Lejeune ...
A power diagram of four circles. In computational geometry, a power diagram, also called a Laguerre–Voronoi diagram, Dirichlet cell complex, radical Voronoi tesselation or a sectional Dirichlet tesselation, is a partition of the Euclidean plane into polygonal cells defined from a set of circles.
Worley noise, also called Voronoi noise and cellular noise, is a noise function introduced by Steven Worley in 1996. Worley noise is an extension of the Voronoi diagram that outputs a real value at a given coordinate that corresponds to the Distance of the nth nearest seed (usually n=1) and the seeds are distributed evenly through the region.
The purple-shaded region is the new Voronoi cell, after inserting the point to be interpolated (black dot). The weights represent the intersection areas of the purple-cell with each of the seven surrounding cells. Natural-neighbor interpolation or Sibson interpolation is a method of spatial interpolation, developed by Robin Sibson. [1]