Search results
Results From The WOW.Com Content Network
Using the arc length formula above, this equation can be rewritten in terms of dθ / dt : = =, =, where h is the vertical distance the pendulum fell. Look at Figure 2, which presents the trigonometry of a simple pendulum.
A simple pendulum exhibits approximately simple harmonic motion under the conditions of no damping and small amplitude. Assuming no damping, the differential equation governing a simple pendulum of length l {\displaystyle l} , where g {\displaystyle g} is the local acceleration of gravity , is d 2 θ d t 2 + g l sin θ = 0. {\displaystyle ...
These curves correspond to the pendulum swinging periodically from side to side. If < then the curve is open, and this corresponds to the pendulum forever swinging through complete circles. In this system the separatrix is the curve that corresponds to =. It separates — hence the name — the phase space into two distinct areas, each with a ...
When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
"Simple gravity pendulum" model assumes no friction or air resistance. A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. [1] When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position.
A simple pendulum with oscillating pivot point Take a more complicated example. Refer to the next figure at right, Assume the top end of the string is attached to a pivot point undergoing a simple harmonic motion x t = x 0 cos ω t , {\displaystyle x_{t}=x_{0}\cos \omega t,}
Suppose also that the amplitude of the vertical vibrations, , is much less than the length of the pendulum. The pendulum's trajectory in phase space will trace out a spiral around a curve C {\displaystyle C} , moving along C {\displaystyle C} at the slow rate g / l {\displaystyle {\sqrt {g/l}}} but moving around it at the fast rate ω ...