Search results
Results From The WOW.Com Content Network
A Feynman diagram (box diagram) for photon–photon scattering: one photon scatters from the transient vacuum charge fluctuations of the other. Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed.
q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle labels separated by '/', one particle label is chosen.
Gamma rays are produced during gamma decay, which normally occurs after other forms of decay occur, such as alpha or beta decay. A radioactive nucleus can decay by the emission of an α or β particle. The daughter nucleus that results is usually left in an excited state. It can then decay to a lower energy state by emitting a gamma ray photon ...
Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the strong, weak and electromagnetic forces.
Gamma radiation detected in an isopropanol cloud chamber. Gamma (γ) radiation consists of photons with a wavelength less than 3 × 10 −11 m (greater than 10 19 Hz and 41.4 keV). [4] Gamma radiation emission is a nuclear process that occurs to rid an unstable nucleus of excess energy after most nuclear reactions. Both alpha and beta particles ...
The photon's energy is converted to particle mass in accordance with Einstein's equation, E = mc 2; where E is energy, m is mass and c is the speed of light. The photon must have higher energy than the sum of the rest mass energies of an electron and positron (2 × 511 keV = 1.022 MeV, resulting in a photon wavelength of 1.2132 pm ) for the ...
Unlike a bubble chamber picture, only the sum of all relevant Feynman diagrams represent any given particle interaction; particles do not choose a particular diagram each time they interact. The law of summation is in accord with the principle of superposition —every diagram contributes to the total process's amplitude.
The effective mass is a quantity that is used to simplify band structures by modeling the behavior of a free particle with that mass. For some purposes and some materials, the effective mass can be considered to be a simple constant of a material.