Search results
Results From The WOW.Com Content Network
To get to the bottom of why cats chase lasers, we called in expert vet Dr. Hannah Godfrey. Below, she explains why they find them so appealing and whether lasers cause anxiety in cats .
Blue–red contrast demonstrating depth perception effects 3 Layers of depths "Rivers, Valleys & Mountains". Chromostereopsis is a visual illusion whereby the impression of depth is conveyed in two-dimensional color images, usually of red–blue or red–green colors, but can also be perceived with red–grey or blue–grey images.
A blue or red laser will appear much dimmer—and thus less distracting—than a green or yellow laser of equal power. [8] For example, a 10-watt continuous-wave yttrium aluminium garnet laser at 532 nanometers (green) can appear brighter to the eye than an 18-watt continuous-wave argon-ion laser that outputs 10 watts of 514 nm (green-blue ...
The near-infrared (NIR) window (also known as optical window or therapeutic window) defines the range of wavelengths from 650 to 1350 nanometre (nm) where light has its maximum depth of penetration in tissue. [1] Within the NIR window, scattering is the most dominant light-tissue interaction, and therefore the propagating light becomes diffused ...
Pets can't visually make sense of the programs we love. To them, everything looks like one big blur -- but dogs and cats see different things. Grumpy Cat hates TV because, well, Grumpy Cat hates ...
A laser warning symbol. Laser radiation safety is the safe design, use and implementation of lasers to minimize the risk of laser accidents, especially those involving eye injuries. Since even relatively small amounts of laser light can lead to permanent eye injuries, the sale and usage of lasers is typically subject to government regulations.
Red (635 nm), blueish violet (445 nm), and green (520 nm) laser pointers. A laser pointer or laser pen is a (typically battery-powered) handheld device that uses a laser diode to emit a narrow low-power visible laser beam (i.e. coherent light) to highlight something of interest with a small bright colored spot.
The first working laser was a ruby laser made by Theodore H. "Ted" Maiman at Hughes Research Laboratories on May 16, 1960. [1] [2] Ruby lasers produce pulses of coherent visible light at a wavelength of 694.3 nm, which is a deep red color. Typical ruby laser pulse lengths are on the order of a millisecond.