Search results
Results From The WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.
The Bride's chair proof of the Pythagorean theorem, that is, the proof of the Pythagorean theorem based on the Bride's Chair diagram, is given below. The proof has been severely criticized by the German philosopher Arthur Schopenhauer as being unnecessarily complicated, with construction lines drawn here and there and a long line of deductive ...
The Pythagorean theorem is also ancient, but it could only take its central role in the measurement of distances after the invention of Cartesian coordinates by René Descartes in 1637. The distance formula itself was first published in 1731 by Alexis Clairaut . [ 34 ]
Gauss's Pythagorean right triangle proposal is an idea attributed to Carl Friedrich Gauss for a method to signal extraterrestrial beings by constructing an immense right triangle and three squares on the surface of the Earth. The shapes would be a symbolic representation of the Pythagorean theorem, large enough to be seen from the Moon or Mars.
Visual checking of the Pythagorean theorem for the (3, 4, 5) triangle as in the Zhoubi Suanjing 500–200 BC. The Pythagorean theorem is a consequence of the Euclidean metric . The concept of length or distance can be generalized, leading to the idea of metrics . [ 65 ]
The Pythagorean theorem and de Gua's theorem are special cases (n = 2, 3) of a general theorem about n-simplices with a right-angle corner, proved by P. S. Donchian and H. S. M. Coxeter in 1935. [2] This, in turn, is a special case of a yet more general theorem by Donald R. Conant and William A. Beyer (1974), [3] which can be stated as follows.
IM 67118, also known as Db 2-146, is an Old Babylonian clay tablet in the collection of the Iraq Museum that contains the solution to a problem in plane geometry concerning a rectangle with given area and diagonal.