Search results
Results From The WOW.Com Content Network
In Java associative arrays are implemented as "maps", which are part of the Java collections framework. Since J2SE 5.0 and the introduction of generics into Java, collections can have a type specified; for example, an associative array that maps strings to strings might be specified as follows:
Helper List::MoreUtils::each_array combines more than one list until the longest one is exhausted, filling the others with undef. PHP: array_map(callable, array) array_map(callable, array1,array2) array_map(callable, array1,array2, ...) The number of parameters for callable should match the number of arrays. extends the shorter lists with NULL ...
The most frequently used general-purpose implementation of an associative array is with a hash table: an array combined with a hash function that separates each key into a separate "bucket" of the array. The basic idea behind a hash table is that accessing an element of an array via its index is a simple, constant-time operation.
Go's foreach loop can be used to loop over an array, slice, string, map, or channel. Using the two-value form gets the index/key (first element) and the value (second element): for index , value := range someCollection { // Do something to index and value }
Next, the user is prompted for a key to search for in the map. Using the iterator created earlier, the find() function searches for an element with the given key. If it finds the key, the program prints the element's value. If it doesn't find it, an iterator to the end of the map is returned and it outputs that the key could not be found.
Sequences (arrays/linked lists): ordered collections vector: a dynamic array, like C array (i.e., capable of random access) with the ability to resize itself automatically when inserting or erasing an object. Inserting an element to the back of the vector at the end takes amortized constant time. Removing the last element takes only constant ...
By default, methods in C++ are not virtual (i.e., opt-in virtual). In Java, methods are virtual by default, but can be made non-virtual by using the final keyword (i.e., opt-out virtual). C++ enumerations are primitive types and support implicit conversion to integer types (but not from integer types).
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.