Search results
Results From The WOW.Com Content Network
DNase I cleaves DNA to form two oligonucleotide-end products with 5’-phospho and 3’-hydroxy ends and is produced mainly by organs of the digestive system. The DNase I family requires Ca2+ and Mg2+ cations as activators and selectively expressed. [1] In terms of pH, the DNAses I family is active in normal pH of around 6.5 to 8.
A DNase footprinting assay [1] is a DNA footprinting technique from molecular biology/biochemistry that detects DNA-protein interaction using the fact that a protein bound to DNA will often protect that DNA from enzymatic cleavage. This makes it possible to locate a protein binding site on a particular DNA molecule.
DNase agar is used to test whether a microbe can produce the exoenzyme deoxyribonuclease (DNase), which hydrolyzes DNA. Methyl green is used as an indicator in the growth medium because it is a cation that provides an opaqueness to a medium with the presence of negatively charged DNA strands. When DNA is cleaved, the media becomes clear ...
Thus, the Hershey–Chase experiment helped to confirm that DNA, not protein, is the genetic material. [6] Hershey and Chase showed that the introduction of deoxyribonuclease (referred to as DNase), an enzyme that breaks down DNA, into a solution containing the labeled bacteriophages did not introduce any 32 P into the solution. This ...
Gel shift assays are often performed in vitro concurrently with DNase footprinting, primer extension, and promoter-probe experiments when studying transcription initiation, DNA gang replication, DNA repair or RNA processing and maturation, as well as pre-mRNA splicing. [1]
At sufficient concentrations, DNase I is capable of digesting nucleosome-bound DNA to 10bp, whereas micrococcal nuclease cannot. [17] Additionally, DNase-seq is used to identify DHSs, which are regions of DNA that are hypersensitive to DNase treatment and are often indicative of regulatory regions (e.g. promoters or enhancers). [57]
DNase IV works by attacking multiple polynucleotide chains at the same time. [10] Since it does not cleave dsDNA in a processive way, the rate of hydrolysis of this enzyme is faster than native DNA in terms of kinetics. [14] DNase IV does not recognize specific sequences on DNA for non-staggered cleavage.
Deoxyribonuclease I (usually called DNase I), is an endonuclease of the DNase family coded by the human gene DNASE1. [5] DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide, yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average producing tetranucleotides.