Search results
Results From The WOW.Com Content Network
The Weingarten equation is an analog of the Gauss formula for a connection in the normal bundle. Let X ∈ T M {\displaystyle X\in TM} and ξ {\displaystyle \xi } a normal vector field. Then decompose the ambient covariant derivative of ξ {\displaystyle \xi } along X into tangential and normal components:
To convert any formula between the SI, Heaviside–Lorentz system or Gaussian system, the corresponding expressions shown in the table below can be equated and hence substituted for each other. Replace 1 / c 2 {\displaystyle 1/c^{2}} by ε 0 μ 0 {\displaystyle \varepsilon _{0}\mu _{0}} or vice versa.
In the CGS-ESU system, charge q is therefore has the dimension to M 1/2 L 3/2 T −1. Other units in the CGS-ESU system include the statampere (1 statC/s) and statvolt (1 erg/statC). In CGS-ESU, all electric and magnetic quantities are dimensionally expressible in terms of length, mass, and time, and none has an independent dimension.
If 1−c, a−b, a+b−c differ by signs or two of them are 1/3 or −1/3 then there is a cubic transformation of the hypergeometric function, connecting it to a different value of z related by a cubic equation.
Thus, the gyroradius is directly proportional to the particle mass and perpendicular velocity, while it is inversely proportional to the particle electric charge and the magnetic field strength. The time it takes the particle to complete one revolution, called the period , can be calculated to be T g = 2 π r g v ⊥ . {\displaystyle T_{g ...
Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. [ 1 ] : 13–15 Other integrals can be approximated by versions of the Gaussian integral.
These equations are inhomogeneous versions of the wave equation, with the terms on the right side of the equation serving as the source functions for the wave. As with any wave equation, these equations lead to two types of solution: advanced potentials (which are related to the configuration of the sources at future points in time), and ...
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.