When.com Web Search

  1. Ad

    related to: sentiment analysis gfg practice

Search results

  1. Results From The WOW.Com Content Network
  2. Sentiment analysis - Wikipedia

    en.wikipedia.org/wiki/Sentiment_analysis

    Sentiment analysis (also known as opinion mining or emotion AI) is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information.

  3. Multimodal sentiment analysis - Wikipedia

    en.wikipedia.org/wiki/Multimodal_sentiment_analysis

    Multimodal sentiment analysis is a technology for traditional text-based sentiment analysis, which includes modalities such as audio and visual data. [1] It can be bimodal, which includes different combinations of two modalities, or trimodal, which incorporates three modalities. [ 2 ]

  4. Social media analytics - Wikipedia

    en.wikipedia.org/wiki/Social_media_analytics

    In other words, data analysis is the phase that takes filtered data as input and transforms that into information of value to the analysts. Many different types of analysis can be performed with social media data, including analysis of posts, sentiment, sentiment drivers, geography, demographics, etc. The data analysis step begins once we know ...

  5. Treebank - Wikipedia

    en.wikipedia.org/wiki/Treebank

    In practice, fully checking and completing the parsing of natural language corpora is a labour-intensive project that can take teams of graduate linguists several years. The level of annotation detail and the breadth of the linguistic sample determine the difficulty of the task and the length of time required to build a treebank.

  6. Cross-language information retrieval - Wikipedia

    en.wikipedia.org/wiki/Cross-language_information...

    Other related information access tasks, such as media monitoring, information filtering and routing, sentiment analysis, and information extraction require more sophisticated models and typically more processing and analysis of the information items of interest. Much of that processing needs to be aware of the specifics of the target languages ...

  7. Latent semantic analysis - Wikipedia

    en.wikipedia.org/wiki/Latent_semantic_analysis

    The use of Latent Semantic Analysis has been prevalent in the study of human memory, especially in areas of free recall and memory search. There is a positive correlation between the semantic similarity of two words (as measured by LSA) and the probability that the words would be recalled one after another in free recall tasks using study lists ...

  8. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  9. Latent Dirichlet allocation - Wikipedia

    en.wikipedia.org/wiki/Latent_Dirichlet_allocation

    In natural language processing, latent Dirichlet allocation (LDA) is a Bayesian network (and, therefore, a generative statistical model) for modeling automatically extracted topics in textual corpora.