When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_test

    A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...

  3. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    These values can be calculated evaluating the quantile function (also known as "inverse CDF" or "ICDF") of the chi-squared distribution; [24] e. g., the χ 2 ICDF for p = 0.05 and df = 7 yields 2.1673 ≈ 2.17 as in the table above, noticing that 1 – p is the p-value from the table.

  4. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...

  5. Chi distribution - Wikipedia

    en.wikipedia.org/wiki/Chi_distribution

    It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.

  6. Proofs related to chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Proofs_related_to_chi...

    Where and are the cdf and pdf of the corresponding random variables. Then Y = X 2 ∼ χ 1 2 . {\displaystyle Y=X^{2}\sim \chi _{1}^{2}.} Alternative proof directly using the change of variable formula

  7. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    The resulting value can be compared with a chi-square distribution to determine the goodness of fit. The chi-square distribution has ( k − c ) degrees of freedom , where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution plus one.

  8. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    The block chi-square, 9.562, tests whether either or both of the variables included in this block (GPA and TUCE) have effects that differ from zero. This is the equivalent of an incremental F test, i.e. it tests H 0: β GPA = β TUCE = 0. The model chi-square, 15.404, tells you whether any of the three Independent Variabls has significant effects.

  9. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation ( MSWD ) in isotopic dating [ 1 ] and variance of unit weight in the context of weighted least squares .