Search results
Results From The WOW.Com Content Network
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure.
Whereas a parallelogram's opposite angles are equal and oriented the same way, an antiparallelogram's are equal but oppositely oriented. Antiparallelograms are also called contraparallelograms [1] or crossed parallelograms. [2] Antiparallelograms occur as the vertex figures of certain nonconvex uniform polyhedra.
A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).
An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length. A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles).
The angle between a side and a diagonal is equal to the angle between the opposite side and the same diagonal. The diagonals cut each other in mutually the same ratio (this ratio is the same as that between the lengths of the parallel sides). The diagonals cut the quadrilateral into four triangles of which one opposite pair have equal areas ...
A square is a special case of a rhombus (equal sides, opposite equal angles), a kite (two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), and therefore has all ...
Like kites, a parallelogram also has two pairs of equal-length sides, but they are opposite to each other rather than adjacent. Any non-self-crossing quadrilateral that has an axis of symmetry must be either a kite, with a diagonal axis of symmetry; or an isosceles trapezoid , with an axis of symmetry through the midpoints of two sides.
However, supplementary angles do not have to be on the same line and can be separated in space. For example, adjacent angles of a parallelogram are supplementary, and opposite angles of a cyclic quadrilateral (one whose vertices all fall on a single circle) are supplementary.