Search results
Results From The WOW.Com Content Network
From the t-test, the difference between the group means is 6-2=4. From the regression, the slope is also 4 indicating that a 1-unit change in drug dose (from 0 to 1) gives a 4-unit change in mean word recall (from 2 to 6). The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods ...
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
This page was last edited on 1 February 2025, at 09:36 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Student's t-test assumes that the sample means being compared for two populations are normally distributed, and that the populations have equal variances. Welch's t-test is designed for unequal population variances, but the assumption of normality is maintained. [1] Welch's t-test is an approximate solution to the Behrens–Fisher problem.
In this case, the t i are all either +1 or −1, with 50% chance for each. The standard deviation of the distribution of internally studentized residuals is always 1, but this does not imply that the standard deviation of all the t i of a particular experiment is 1.
In the same volume Fisher contributed applications of Student's t-distribution to regression analysis. [3] Although introduced by others, Studentized residuals are named in Student's honour because, like the problem that led to Student's t-distribution, the idea of adjusting for estimated standard deviations is central to that concept. [7]
The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter.Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false.